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Propagation of Solitary Waves in 
Channels of Decreasing Depth 

C. J. Knickerbocker 1 and Alan C. Newel l  2 

The changes which occur in a right-going solitary wave as it travels a channel of 
decreasing depth are discussed. In addition to the changes in the solitary wave, 
we have found through a judicious use of the conservation laws two secondary 
structures (a shelf and a reflection). Each of these structures is small with respect 
to the solitary wave, though the mass flux associated with each is of the same 
order as that of the solitary wave. Of interest is that the amplitude of the reflec- 
ted wave does not satisfy Green's law. But rather, the amplitude of the reflected 
wave is constant along left-going characteristics. This finding allows us to satisfy 
the mass flux conservation laws to leading order and establishes the perturbed 
Korteweg deVries equation as a consistent approximation for the right-going 
profile. 

KEY WORDS: Korteweg-deVries; solitary wave; Green's law; variable 
depth. 

1, I N T R O D U C T I O N  

For over 100 years many investigators have been interested in models 
which represent the changes that occur in a solitary wave as it travels over 
a slowly changing topography. We shall consider a mathematical model 
based upon the following assumptions regarding the physical situation. 
First, the solitary wave is considered long with respect to the depth, that is 
to say the ratio lid is large (Fig. 1). Second, we shall consider only low- 
amplitude solitary waves or that the ratio aid is small. Third, we are 
assuming that the depth of the water is slowly varying or l/L is small or 
that the order-one changes in the depth occur over many solitary wave 
widths. 
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Fig. 1. Physical system being considered, where N ( x ,  t) is the dimensional elevation, U(x, t) 
is the dimensional horizontal velocity, x is space coordinate, t is time, and D ( x )  is the depth. 
For x < 0, D ( x )  = Do and for x > Xl ,  D ( x )  = D 1 . 

Under these assumptions, what are the effects of a slowly decreasing 
channel depth on a long low-amplitude solitary wave? 

1. The solitary wave will slowly distort. 
2. A secondary structure (a shelf) will be created and will travel in the 

lee of the solitary wave. 
3. Another structure will be created in the form of a reflection which 

travels away from the solitary wave and shelf. 

We can establish the leading order components of the flow (where by 
leading order we mean any component  of the flow which contains an 
order-one amount  of mass) through a judicious use of particular conser- 
vation laws of the model. The steps of the analysis are as follows: 

First, since the depth is varying (Fig. 1), some of the water will be 
reflected as the solitary wave travels from x = 0 to x = x f .  In other words, 
the amount  of water passing x = xf is less than the amount  of water passing 
x = 0. The rule for this shore bound (this will also be called unidirectional 
or right-going from the orientation of the figures) mass flux is 

c~x pD(x) U(x, t)dt=O (1.1) 

[where x is space, t is time, D(x) is the local depth, U(x, t) the horizontal 
velocity, p the density, g the gravity, Do the constant local depth for x < 0],  
which shall be referred to as the conservation of unidirectional mass flux. 

The water which was reflected, as the solitary wave traveled from x = 0 
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to x = xf, will pass x = 0. Therefore, the total amount of mass flux at x = 0 
(unidirectional mass flux at x = 0 plus the reflected mass flux) is equal to 
the total mass flux at x = xf" This is written as 

(~ co 

PD~/4 ~x f_ o~ D3/4(x) U(x, t) dt = 0 (1.2) 

which shall be referred to as the total conservation of mass flux law. 
Second, as the variation in the depth is felt by the solitary wave 

4 tl~Doe sech 2 I t(gg)a/2 gl/2x 2r/~ 
N(x, t ) =  5 r/o (D0)I/2 I- Do ~ j ,  x < 0  

(1 .3 )  

[-where N(x, t)= D1/2U(x, t)/g 1/2 is the surface elevation] it will begin to 
distort. These distortions in the amplitude, shape, and speed can be 
calculated using the center of gravity and conservation of energy law, 
yielding 

U s ( x  , l )  ~- 41a2 rl2~crl/2/-3-3/2 sech2(r/0 R) + O(ga ) ~,10~0o6 

where 
R -  t(eg)i/2 ~1/2x 2q~e3/Zx 

- -  ( 1 . 4 )  
Do Do 3D0 

8, ~,gl/2 D D The mass flux associated with the solitary wave, 7,1o~- o , does not 
fulfill the mass flux requirement for either the total flow (1.2) or unidirec- 
tional flow (1.1). The small parameter Do el/2 is found from the amplitude 
of the incoming solitary wave (1.3). What happens is that the solitary wave 
reacts to the changing depth by dropping off small amounts of water. Some 
of the water will travel behind the solitary wave forming a right-going shelf 
and some of the water will travel away from the solitary wave forming a 
left-going wave of reflection. 

Third, the water droppe d along the path of the solitary wave, forming 
the shelf, can be found from the difference between the rate of change of the 
unidirectional mass flux and the of rate of change of the mass flux of the 
solitary wave. The right-going shelf is small with respect to the solitary 
wave and can therefore be treated as a linear model, and its evolution 
along right-going characteristics is given by Green's law (the amplitude is 
inversely proportional to the fourth root of the depth). The horizontal 
velocity of the shelf is given by 

U+ (x, t) - - 3  d_D D_3/4(x) D9/4(.~. ) -t- O(e0  "2 ) (1.5) 
rio(Dog) 1/2 ax 
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where ~ is the current position of the solitary wave. The shelf is finite in 
extent and exists between the right-going linear characteristic which passes 
through the point where the depth begins to change 

xosl/2/Do 
8 + = - t (ge) l /2 / (Do)  1/2 + [Do/D(r)]  1/2 d r = O  (1.6) 

and the solitary wave. Even though the shelf is small in amplitude, over 
distances in which the depth changes by an order-one amount, the shelf is 
long and the mass flux associated with it is 

8~a n01/2/-'17/4]~11/4 8m n g l / 2 r ' l  / 7  
~q0k"  t" 1-"0 ~ - -  5 ' / 0 H  a~ '0zJ  

which is of the same order as the mass flux of the solitary wave. 
Fourth, the reflected wave can be calculated in a manner similar to 

that used to calculate the shelf. By comparing the rate of change of the 
total mass flux and the right-going mass flux (the mass flux consisting of 
solitary wave and shelf), we can calculate the reflection at the lee of the 
right-going flow. Its evolution, along left-going characteristics, is given by a 
new law~ the amplitude of the reflection is constant along left-going 
characteristics. The horizontal velocity of the reflected wave is given by 

m ol/21-'19/4 
U _ ( x , t ) _ ' l o ~  "- 'o Dx  D 1/2(2) D l(x)..~_O(e2a2 ) (1.7) 

3 

Over distances by which the depth changes by an order-one amount, the 
length of the reflection is very long, stretching from O + = 0, to 

f xel/2/Do 
~9 _ = t(gs),/2/(Do)l/2 + [Do/D(r)  ] 1/2 dr = 0 (1.8) 

~0 

so that the mass flux associated with the reflection is of the same order as 
the mass flux of the solitary wave or the right-going shelf. That  is 

8~ ~el /2 /~7/4/)1/4  ~1~ "~81/2DT/4D1/4 
390k"  t" J-"0 ~ f  - - 3  Ok' 0 

The total mass flux, which is found by adding the mass flux due to 
each portion of the solution, is s ,  nel/2FI7/4/'r'll/4 3'10k'" ~0 ~ f  and is equal to the flux of 
all right-going disturbances at the point after which no further depth 
changes occurs. These results are established in Section 2 and are confirmed 
with numerical experiments in Section 3. 
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History 

The mathematical analysis of the surface wave model has been ongo- 
ing for the last 150 years. 

One of the first studies was conducted by Green in 1832. He studied 
the effects of a slowly changing depth on a linear surface wave and found 
that the amplitude of the linear wave changed inversely proportional to the 
fourth root of the depth. This was to become known as Green's law. Forty 
years later, Boussinesq (1~ was able to show, by invoking the conservation of 
energy requirement, that the amplitude of a solitary wave changed inver- 
sely proportional to the depth. He also noticed that the total conservation 
of mass flux requirement could not be satisfied by the changing solitary 
wave. Then in 1895, Korteweg and deVries (12) introduced their model for 
unidirectional flow over a constant depth and also found solitary wave 
solutions. 

In the early nineteen seventies Kakutani (6) and Johnson (4'5~ indepen- 
dently derived a variation of the Korteweg-deVries equation (PKdV) 
which governs unidirectional flow of weakly nonlinear waves over a slowly 
changing depth. A number of articles appeared in the literature within the 
next few years attempting to solve PKdV both analytically and 
numerically. These included attempts by Grimshaw, (2'3) who by invoking 
the conservation of energy requirement showed that the amplitude of the 
solitary wave changed inversely proportional to the depth. He also obser- 
ved that "the mass contained in the wave is not conserved." The solution of 
this model was the subject of several articles by Johnson (4'5) in which he 
attempted to solve the model both analytically and numerically. His earlier 
articles were concerned with the production of new solitary wave as the 
solitary wave traveled onto a shoal of constant depth. Leibovich and 
Randall (13~ discovered the existence of the shelf numerically but could not 
find a uniform perturbation solution. They did obtain a nonuniform 
solution which became a constant rather than decaying as x became large 
and negative (a result also,found by Johnson) and therefore contained an 
infinite amount of mass. 

The difficulty with the infinite mass was corrected by Kaup and 
Newell. (8) By using the inverse scattering transform they monitored the 
effects of the perturbation on the scattering data. They found that the shelf 
was of finite extent and showed that the rate of change in the solitary wave 
mass was balanced by the rate of change in the mass of the shelf. In 1980 
Knickerbocker and Newell (9) extended these results by describing the 
evolution of the shelf and verifying the results numerically. 

Much earlier, Peregrine (~6) attempted to solve the full two-directional 
model. He was successful in approximating the initial amplitude of the 
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reflected wave with the use of characteristics (he did not mention the 
existence of the shelf). He also made qualitative comparisons with a 
numerical simulation. In 1979, Miles ~ also calculated the initial 
amplitude of the reflection, but he then used Green's law to describe the 
subsequent evolution of the reflected wave. In 1984, Knickerbocker and 
Newell (n) discovered a new law for governing the evolution of the reflec- 
tion. 

Recently, some controversy has arisen regarding whether the reflected 
wave actually exists. Numerical simulations of the full two-directional wave 
gives convincing evidence of the size, shape, and existence of the reflection. 

2. A N A L Y S I S  

The shallow water equations which describe the total flow (the 
propagation of a solitary wave and its trailing and reflected shelves) are, in 
nondimensional coordinates, 

n t + (hU)x = - e ( U n ) x  + 6 h3u ...... (2.1) 

8 
u, + n x = --auu x + -; h2u 

z 
(2.2) 

The equations are the kinematic boundary condition for the free surface 
and the horizontal momentum equation, respectively. In Eqs. (2.1), (2.2), 
n(x, t)  (=N/Do), u(x;t) [=U/(e(gDo)~/2)], x (=xel/2/Do) and t 
[ =t(gz)l/2/(Do) 1/2] are the nondimensional elevation, horizontal velocity 
to leading order (f~ = u + ahZuxx/2, where ~ is the horizontal velocity at the 
surface), horizontal distance, and time variables, respectively. The non- 
dimensional depth h(x)= D(x)/Do changes from unity to Df/D o in a dis- 
tance x f=  O(1/(e3/za)), where 0 < e ~o-~ 1, which is long with respect to 
the width of the solitary wave and the length of the right-going shelf. The 
small parameter a is determined from the equation 

(Do 1 
D \ - ~  -~a Xr) = Dr 

once xf and D r are given. Note that in dimensionless coordinates, the 
amplitude of the solitary wave is order one, its width is order one; the 
amplitude of the right-going trailing shelf is order o-, its length is order 1/cr 
(Fig. 2); the amplitude of the reflected wave is order ea and its length is 
order 1/e~ (Fig. 3). To leading order in e, the conservation law for the mass 
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~ (x,t) 

x=O x=x{  

h(x) = 1 h(x) = I-~o x ~ " ~ h ( x ) =  hf 

Fig. 2. This figure shows the evolution of a portion of the right-going shelf. The point (2, [) 
is the point of creation and the dashed line ( - - )  corresponds to the positive characteristic 
passing through (Y, t-) and (x, t). 

flux (the amount of water crossing a fixed station for all time) is, from 
(2.1), co ~xf h(x) u(x , t )d ,=O (2.3) 

o o  

We may look for solutions n+ and u+ of (2.1) and (2.2) which depend 
on the right-going characteristic 

O+ = - t +  [h(r)]t/2 

e _ ~ 0  e+=0 e+=o 

x=O x= xf 

h(x) = 1 h(x) = l-Eax / - h ( x ) = h f  
/ 

Fig. 3. This figure shows the evolution of a portion of the left-going reflection. The point 
(-~, to) is the point in space-time where the reflection measured at (x, t) is created. The 
negative characteristic O_ = t +S~ h re(r)dr. The dashed line corresponds to the negative 
characteristic passing through (2, to) and (x, t). 
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and slowly on X ( X =  ex). In this situation, one finds that, to leading order, 

n + = hl/2u+ (2.4) 

~ + h  m (h3/4u+)=e - -~h  u+ ~x 6 3x 3 ) (2.5) 

and 

(0  h 1/2 ~ 1/4/2 ( 3 _ l/4 On + 1 h11/4 03/2 + 
+ 0 x / ( h  + ) = e  - ~ h  n+ ~x 6 0x 3 j (2.6) 

Note that the linear portions of (2.5) and (2.6) are Green's law; h3/4u+ 
and hl/4n+ are constants along the right-going characteristics 

fo dr O + = - t  + [h(r)]  1/2 

In terms of O+ and X, the transformation of n+(x, t) t o / 2 ( 0 + ,  X) yields 
the perturbed Korteweg-deVries equation, 

nx+-~h-3?2nno+ +-~hl/2no+o+o+= - n (2.7) 

and similarly for u(O +, X), 

lblUo+ ~-~hl/2UO+O+O+=--"~ bl (2.8) 

From (2.8) we find that 

0 h3/4(X) u+(O+, X) dO+ 0 (2.9) 
0X - .~ 

In order to solve (2.5) under the initial boundary conditions 

n+(0, t )=  u+(0, t) =-~t/2 sech2(t/ot), t>~0 

n+(x,O)/x/-s , x>~O 

we assume a solution of the form 

n+(x, t)=ns(x, t)+ ~+(x, t) 
(2.10) 

u+(x, t)= u~(x, t)+~+(x, t) 
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where n,(x, t) and us(x, t) are the amplitude and velocity of the solitary 
wave, respectively, and ~+(x, t) and ~+(x, t) denote the amplitude and 
velocity of the right-going shelf, respectively [note the shelf is order a in 
magnitude and nonzero only between O+ = 0 and O+ = O, the position of 
the solitary wave (Fig. 2)]. 

To find the changes in the solitary wave Ins(x, t), us(x, t)], we assume 
a leading order solution of the form 

us(x, t) = u,(O +, X)  = A ( X )  sech2[w(X)(O + 

From (2.8) we find that 

A(x )  = 41a3/2u,2{ g]  

-0)]  

and (2.11a) 

19X = 2/7 2h -5/2[y]  

From the conservation of energy 

h3/2(X) u2(O +, X)  dO + = 0 
--c~o 

we find that 

0-X = 0  (2.11b) 

By combining (2.11a) and (2.11b) we find that A ( X ) =  4~12h-3/2(x ) and 
w(X)  = qoh 3/2(X). 

Therefore, 

Us(X, t)---- "3'tO"4*a2 h-- 3/2 sech 2[ t loh- 3/2( O + -- O)]  (2.12a) 

and from (2.4), the amplitude of the solitary wave is 

n~(x, t) = ~'to4" 2,.-la sech2[~loh-3/2(O + - 0 ) ]  

The mass flux associated with this component is 

ms(X) = ~loh(x)  (2.12b) 

Using (2.4) and approximating the x derivatives on the right-hand side 
of (2.5) with t derivatives, we find that 

0 
f ~  h3/4(x)u+(x,  t ) d t = O  (2.13) 

•x -~o 

822/'39/5-6-14 
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Therefore, under the assumptions made in (2.10), we have 

-~X 3i(x) h3/4~+ dt = - - -  oe h3/4Us dt (2.14) 

where t=f(x)  and t=to(X) correspond to O+ = O  and O+ =0,  respec- 
tively (Fig. 2). Since t~+(x, t) is assumed small and therefore changes 
according to the linear portion of (2.5), we have, upon differentiating the 
left-hand side of (2.14), 

a+(2, 8= 
eqo 

where we have used the fact that h3/4u+ is constant and where (2, t-) 
belongs to the path of the solitary wave (Fig. 2). From Green's law, which 
is valid because the change in ~+ is fast with respect to the change in h(x), 

- 3  
~+(x, t) = h 3/4(x) h9/4(2) hx(2 ) (2.15) 

gqo 

for any (x, t) lying between the solitary wave path O+ = 0 and O+ = 0, 
and (2, t-) is the point at which the right-going characteristic through (x, t) 
meets O+ = O (Fig. 2). The amplitude of the shelf can be found from (2.4), 
yielding 

- 3  
~+(x,  t ) =  

8rlo 
h-l/4(x) h9/4(x) hx(x ) 

A little calculation (9) shows that the mass flUX ~ +  associated with the shelf 
component of the flow is 

8 8 
r~ + (x)  = f v h(x)  ~ + (x, t) & =-~ nohl / ' (x)  - ~ nob(x)  

--oo 
(2.16) 

which, when added to the mass flux (2.12b) associated with the solitary 
wave gives ~lohl/4(x), which satisfies the equation for the right-going flux, 
but not (2.3), the total mass flux requirement. 

In order to compensate for this discrepancy, it is necessary to add a 
left-going component n (x, t) and u_(x, t) to the solution. Because of their 
very small amplitudes, n (x, t) and u_(x, t) will satisfy the linearized ver- 
sions of equations (2.1) and (2.2). The reflection will be nonzero in the 
region bounded by O_ = 0  and O+ = 0  (Fig. 3). We first calculate their 
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values along O+ = 0 using the local conservation of mass flux. From (2.3) 

we have 

-~x [h(x) u + ( x , t ) + h ( x ) u  ( x , t ) ] d t = O  

Therefore, 

h(x) u_ (x, t) dt = - - -  h(x) u+ (x, t) dt 

- -  h l / 4 ( X )  h3/4(x) u + (x, t) dt 
o c  

= - ~ n o h  ~/~(x) h~(x) ,  x < 2 

When the solitary wave is at (2, to) (Fig. 3), the reflection contributed 
by the solitary wave up to that point will be nonzero from t = to(X), which 
is the right-going characteristic 0+ = 0, and t = t ( x ) ,  which is the left- 
going characteristic initiated at (2, to). Therefore, 

~---~f~ h(x)u (x,t)dt=~-~ ~X)h(x)u_(x,t)dt 
~to(x) 

and 

_ _  2 
0 ~,-I~)h(x) u_(x ,  t) dt = - ~  rloh-3/4(x) hx(x), 

OX ~to(x) 
x < 2  (2.17) 

We differentiate the integral in (2.17), add and subtract h ( x ) u ( x ,  to), 
and use [h(x) u (x, t ) ] x =  - n  , to find that 

h(x) u (x, to)= ~-~oh-V4(x) hx(x) 

�89 ,e/-h [ n _ ( x, t _ ) + ~/-h~ u _ ( x, t )] 

+ � 8 9  t o )+x / -hu_ (x ,  to)] (2.18) 

In particular (2.18) holds as x tends to 2, whence t_ tends to t o. This 
is how Miles E~43 calculated u_(2,  to). However Eq. (2.18) yields two pieces 
of information. First, 

u (x ,  t o ) =  1 _ ~r/o h - s/4(~) hx(2) (2.19) 

Second, we obtain that 

(n_ +,,/~ u_)I,_ =(n- +,fh u_)It0 (2.20) 
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for any t_ and therefore n + ~ u_ is independent of time at any fixed x, 
that is, 

L (n_ + ~ h  u _ ) = O  (2.21) 
Ot 

In order to calculate u ( x ,  t) for points (x, t) (Fig. 3) in the region 
bounded by O = 0  and O+ = 0, Miles applied Green's law to (2.19); that 
is, he took h3/4u constant along left-going characteristics. He also took 
hi/4n equal to -h3/4u to leading order. However, this leads to the total 
mass flux being 2~#ohl/41n(hl/h)-~,o,,8" z,1/4, which is clearly not constant. 
What is wrong? 

It is incorrect to assume that Green's law holds for left-going distur- 
bances. Green's law only holds when the depth h(x) changes slowly with 
respect to the gradient of the disturbances in question. On the other hand, 
the reflected wave, by the very manner in which it is created, has a horizon- 
tal gradient which is of the same order as the gradient of the depth. 
However, Eq. (2.21) 

n t + x ~ u _ t = O  

together with n_ t + (hu_)x = 0 gives us that 

( ~3 _h~/2 ~ ~ (hu )=0 (2.22a) 
77 ax] 

and 

(and also n_)  is constant along left-going charac- which means that hu 
teristics. Thus for a point (x, t) in the region bounded by O_ = 0 and 
O+ = 0 the velocity of the reflected wave is 

u (x,t)=�89 1/4(;7)h ~(x) (2.23) 

The reflected mass flux measured along a constant x (x = xc, Fig. 4), 
can be found by integrating the following expression: 

foo h(xc) u_(xc, t) (2.24) dt 
- - o o  

But, as the right-going flow travels from x = xc to x = xp, the reflected mass 
flux will be nonzero only between (xc, to(Xc)) (which lies on the right-going 
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~:~. (Xr (Xc)) 

0 = 0  II x "  x 0+=0  0 + = 0  

. . . .  

~ (x,tk) 
~(x~,to(• 

x=O x=xf  

h(x) = 1 h(x)= l-~:ax / / ~  
/ h(x) = hf 

Fig. 4. This figure shows the evolution of a portion of the left-going reflection. The point 
(xp, to(Xp)) lies along O+ = 0 and corresponds to the rear position of the right-going shelf. 
The line x = xc corresponds to the station at which the reflected mass flux is to be measured 
and (Xo, t) is any point on the line between (xo, to(X,.)) and (x,., t_(xc)). The point (x, tk) is 
the intersection of the left-going characteristic through (x,., t) and O + = 0. 

characteristic 0+ =0)  and (xo, t_(xc)) (which is the left-going charac- 
teristic initiated at (Xp, to(Xp) ). Therefore 

oo ~t (xc) 
f-oo h(xc) u - ( x e '  t) dt h(xc) u (xc, t) dt 

~ tO( Xc) 

We will convert this integration in t from to(Xc) to t_ (xo) to an integration 
from x = x c  to Xp along 0+ = 0. From (2.22a), 

h(x,,) u_(xc, t )=h(x)u  (x, t~) 

where (x, t~) is the point of intersection 
characteristic propagating through (xc, t). 

This implies that 

of 0+ = 0  and the left-going 

t k + h 1/2(r) dr = t + h 1/2(r) dr 

o r  

t = t k + f o h  ~/2(r) d r - fo~h  W2(r) dr (2.25) 
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Also at the point (x, tk) , we have that 

- tk + h 1/2(r) dr = 0 (2.26) 

This gives us a relationship between t and x. From (2.25) and (2.26) we 
have 

t=2foh m(r)dr-fo~Ch m(r)dr 

o r  

dt = 2h 1/2(x) dx 

Therefore the reflected mass flux is (Fig. 4) 

oo ~t_(xc) 
f "  h(xc) u_(xc, t) dt= h(xc) u_(xc, t) dt 

- ~ t o ( x , , )  

_ f,_Ix,) h(x) u_.(x, tk) dt 
- -  O t o ( x ~ )  

or from (2.19) and (2.27) 

2 rxp h_3/4 =5 oj , dh 

_ _  8 1 / 4  8 1 / 4  -~ lo  h (Xp)-~rloh (xc) 

Knickerbocker and Newel l  

f 
~ 8 8 

m ( x ) =  h(x) u (x, t)dt=-~tloh}/4--~tlo hi/4 (2.28) 
- - o o  

Adding this result to (2.12) and (2.16), the flux associated with the right- 
going component, we obtain for the total flux 

foo h(x) u(x, t) dt =8 rloh}/4 (2.29) 
- - o o  

which is a constant and equal to the flux of the right-going component 
once the solitary wave has reached the point at which the depth again 
becomes constant. 

Once the solitary wave has reached a constant depth (x > x7) the mass flux 
associated with the reflected wave along any x is 

(2.27) 
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In order to calculate the amplitude of the reflected wave n , we solve 
the linear Goursat  problem defined as 

n , + ( h u _ ) x = 0  

u_t+n_x=O 

1 dh 
u_ (0  + = o) = ~ ,oh 5/4(x) ~ (x) (2.30) 

u_(O_ = 0 ) = 0  

n (O_ = 0 ) = 0  

The reason that n_ is not equal to -hl/2u [in a manner analogous to 
n+ = ~ u+ for the right-going flow (2.4)] is that the premise by which the 
latter is derived neglects the smaller term hxu+. One can not make this 
assumption for the reflected flow. 

In the following section we show the results of solving the Goursat  
problem numerically and verify that the analysis holds to well within any 
numerically induced errors. 

3. N U M E R I C A L  INTEGRATION OF THE FULL S H A L L O W  
W A T E R  E Q U A T I O N S  

In order to verify the results presented in Section 2, we numerically 
simulated (2.1), (2.2), the full two-directional shallow water equations. This 
simulation involved the use of a second-order accurate finite difference 
scheme with a variable spatial mesh. 

Table I. 

Posi t ion 

Comparison of the Numerical Right-Going Mass Flux and the 
Analytical Right-Going Mass F l u x  

Analyt ica l  

De p th  = 8~loha/4(x)/3 Nu mer i ca l  Percen t  e r ror  

x = 25 0.976 3.05 2.99 1.97 

x = 101 0.901 2.99 2.92 2.34 

x = 202 0.803 2.90 2.84 2.07 

x = 308 0.693 2.80 2.73 2.50 

x = 372 0.637 2.74 2.66 2.92 

x = 4 3 2  0.578 2.67 2.58 3.37 

x = 490 0.521 2.61 2.51 3.83 
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All the numerical results presented here use e = 1 / 6 4 ,  a=1/16, 
r/o= 1.15, ho= 1, h(x)= 1 - e a x ,  h f=  1/2, xf= 512, At=0.075, and 

A x  i = At  [h(xi)l /2][1 + 2erl~h 2(Xi)/3 ] 

chosen so that Ax]At is the velocity of the solitary wave. 
Since the analysis depends heavily on the mass flux requirements, we 

first checked the right-going and total mass flux laws at various stations 
between x = 0 and x = xf (hf= 1/2). The results of the comparison of the 
numerical and analytical right-going mass flux are given in Table I. 

Table II. Mass Flux and Change in Mass Flux at Various Positions in the x, O_ 
Plane a 

x: -9 .9  24.8 101.3 2 0 2 . 1  308.4 371.4 432.0 487.6 547.5 
O Jl(x): 1.00 0.98 0.90 0.80 0.70 0.64 0.58 0.52 0.5 

1400 2.55 2.55 2.53 2.52 2.50 2.49 2.49 2.48 2.48 
0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

1300 2.55 2.55 2.53 2.51 2.50 2.49 2.49 2.48 
0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 

1200 255 2.55 2.53 2.51 2.50 2.50 2.49 2.49 
0.04 0.04 0.04 0.05 0.05 0.05 0.05 

1100 2.60 2.59 2.58 2.56 2.55 2.55 2.54 
0.04 0.04 0.04 0.05 0.05 0.04 

1000 2.64 2.63 2.62 2.61 2.60 2.59 
0.04 0.05 0.05 0.04 0.04 0.05 

900 2.68 2.68 2.67 2.65 2.64 2.64 
0.04 0.04 0.04 0.05 0.05 

800 2.72 2.72 2.71 2.70 2.69 
0.04 0.04 0.04 0.04 0.04 

700 2.76 2.76 2.75 2.74 2.73 
0.04 0.04 0.04 

600 2.80 2.80 2.79 
0.O4 O.O3 

500 2.84 2.83 
O.O4 O.04 

400 2.88 2.87 

a Within each entry of the table the top number is the total mass flux measured along a con- 
stant x from t = - m up to that left-going characteristic O _  = t + ~~ h -  re(r) dr. The bottom 
number is the mass flux measured between two consecutive left-going characteristics listed in 
the table. 
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Table III. Mass Flux and Change in Mass Flux Measured Along a 
Constant x ( x =  371.5) at Various Times a 

Time Mass flux Change in mass flux 

Solitary wave 

423.0 0.04 - 0.04 

424.5 1.78 - 1.74 

426.0 1.98 - 0 . 2 0  

427.5 2.09 - 0.11 

Right-going shelf 

429.0 2.22 - 0.13 

430.5 2.37 -0 .15  

432.0 2.52 - 0.15 

433.5 2.63 -0 .05  

534.0 2.68 -0 .05  

Oscillitory tail 

436.5 2.67 0.39 x 10 2 

444.0 2.66 -0 .18  x 10 .2 

451.5 2.65 0.85 x 10 -3 

459.0 2.65 0.11 x 10 -2 

Left-going reflection 

465 2.65 0.91 • 10 -3 

570 2.60 0.69 • 10 -3 

666 2.56 0.70 x 10 -3 

787.5 2.50 0.73 x 10 .3 

No further reflection 

796.5 2.49 0.26 x 10 3 

851.0 2.49 0.20 • 10 -4 

948 2.49 0.40 x 10 - s  

a The first column gives the time units (note the difference in the time scales between the 

various sections), the second column represents the total mass flux measured at x = 371.5 up 

to the given time, and column 3 gives the mass flux measured only over the previous 1.5 time 
units. 
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In Table II, we display the numerical results for the mass flux 

It _fxar m(x, O_ )= - ~  hu dt' t_ = O_ Jo.,/r~ 

and the increment 

Am(x,O )=m(x ,O  - A O  ) - m ( x , O _ )  

as function of O , 0 <  O < 1400 for several stations x. The negative 
characteristic O_ = 1200 is the one which passes through the intersection 
of O+ = 0 and x = 512, h(512)= �89 This would be the last characteristic on 
which information is carried back if the transition along O+ = 0 between 
right- and left-going flow components was sharp. In actual fact, the trans- 
ition is described by an Airy function (9) and occurs over a width of a -1/3 
times the width of the solitary wave. Indeed we shall see in Table III this is 
the width of the transition along O_ -- 1200. Note that the data are con- 
sistent with our picture that the reflected wave generated along O+ = 0 
between O - A O  and O_ is carried back through this tube. In par- 
ticular, both m(x, 0 _ )  and Am(x, 0 _ )  are independent of x to within the 
order of approximation of Eq.(2.3) (approximately 3%).  Moreover 
m(x, 0_) ,  0 < O  < 1200 is precisely the total right-going flux at the 
station at which the curve O_ = t + S~ dx/x//-s meets O + = 0 and would be 
the total mass flux if the depth were to become constant after this point. 
We emphasize that the reflection is generated all along O+ ---0. In order to 
make sure that the discontinuities in h(x) at x = 0  and x =  512 play no 
significant role, we repeated the calculation with a cubic-shaped bottom. 

Table IV. Comparison at Various Depths of the Analytical and 
Numerical  Times at Which No Further Reflection is Measured ~ 

x h(x) Analytic time Numerical  time 

24.8 0.98 1175 1180 
101.3 0.90 1096 1101 
202.1 0.80 987 991 
308.4 0.70 864 867 
371.4 0.64 787 791 
432.0 0.58 709 714 
487.6 0.52 634 633 

a The analytical time is calculated from t = 1200-S~ h-~/z(r) dr, while the numerical time is 
given as the time at which the change in the mass  flux decreases by a factor of 2. 
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Table III displays the incremental mass flux Am(x, t )=m(x,  t ) -  
m(x, t - 1.5) for x = 371.5. Note the solitary wave, the right-going shelf, the 
oscillatory tail, the long reflection, and the sharp drop at the "last" negative 
characteristic O_ = 1200. Table IV is a comparison at several stations x of 
the times t =  1 2 0 0 -  ~ (dx/x/-s and the times in the numerical experiment 
at which the increment in the reflected mass flux decreased by a factor of 2. 

The total mass flux, which is the right-going flux at x -- x F and equal to 
2.58 for the parameters given above, was measured at various stations and 
found to be a constant to within 4.5%. The error in the mass flux was 
expected since (2.3) is not an exact conservation law of equations (2.1) and 
(2.2). But, upon integrating (2.2) with respect to t we find the exact conser- 
vation law 

I ~ / ~u2~ 

This quantity was measured at various stations and found to be a constant 
to within less than 1%. 

We also checked various components of the analytical solution against 
the numerical results. First, we compared the maximum horizontal velocity 
of the analytical solitary wave [max(u~(x, t)]  = 4t/oh ~/2(x)/3 against the 
maximum horizontal velocity of the numerical solitary wave. The results of 
this comparison can be found in Table V. A graphical representation of the 
comparison between the numerical and analytical solitary waves at t = 500 
can be found in Fig. 5. We also checked the analytical predictions of the 

1.0 

xl/2 (' 
\ m a x ( u ( x , t ) ) /  

0.0 I ~ q  
454 459 464 

x POSITION 

Fig. 5. This figure shows a comparison between the numerical right going flow ( - o - )  and 
the analytical right-going flow (-) versus the spatial coordinate x at time t = 500. Both curves 
were scaled by taking the square root of the normalized value. 
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Table V. Comparison of the Max imum Analytical Horizontal Velocity and the 
Max imum Numerical  Horizontal Velocity at Various Positions 

Numerical Analytical = 
position Depth 4q~h 3/2(x)/3 Numerical Percent error 

10.4 0.99 1.79 1.76 1.5 

99.3 0.90 2.05 1.96 4.4 

211.9 0.79 2.50 2.37 4.9 

317.8 0.69 3.08 2.93 5.0 

417.6 0.59 3.86 3.69 4.4 

509.7 0.50 4.95 4.76 4.0 

horizontal velocity for the right shelf against the numerical experiment. The 
results of this comparison can also be seen in Fig. 5. Except for a slight 
phase shift (less than 5 %), the reader can see that the analytical predic- 
tions and the numerical results for the right-going flow are very close. 

The numerical evidence supports our theoretical picture which asserts 
that the right-going flow component is described by the perturbed Kor- 
teweg-deVries equation (2.8) and the left-going flow component is found 
by solving the Goursat problem (2.30). While Table II showed clearly that 
the incremental mass flux carried through the tubes ( O _ -  A O _ ,  0 _ )  is 
constant in x, we would like to verify (2.22) along each negative charac- 
teristic individually. This is not possible to do using the results of the first 
numerical scheme because even though the mass flux data is accurate, the 
pointwise data are not sufficiently good. Accordingly, we solved the Gour- 
sat problem defined by (2.30) numerically and found 

1. n_ + h m u  is independent of time along a constant x; 
2. hu_ and n [(2.22a), (2.22b), respectively] are constants along left 

going characteristics; 
3. the reflected mass flux is given by (2.28). 

Table VI. A Comparison of (O/Ot)(n_ +hll2u_) and (r 3 for Various co 

8 
x h(x) to" (ca) 3 ~ (n_ + hl/2u_) 

25.6 0.95 1/512 7.5 x 10-9 6.4 x 10 -9 

25.6 0.90 2/512 6,0 x 10 -8 5.1 x 10 -8 
25.6 0.80 4/512 4.8 • 10 7 4.0x 10 -7 
25.6 0.70 6/512 1.6 x 10 .6 1.8 x 10 -6 
25.6 0.65 7/512 2.6 x 10 .6 6.2 x 10 -6 
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Table VII. A Comparison of the Changes in hu_ and n_ wi th  (ca) 3 for 
Various Slopes ~o Along E)_ =101 

8G ~3G3 
8 8 )  [8  1/285 

1/128 4.8 • 10 -7 2.1 • 10 -7 2.3 • 10 -7 
1/256 6.0 x 10 - s  2.4 x 10 - s  2.4 x 10 -8 
1/512 7.5 x 10 -9 4.6 x 10 -9 4.3 • 10 -9 
t/1024 9.3 x 10 -1~ 8.0x 10 - l~  7.6x 10 -1~ 

We first checked the mass flux, ~ h u  dt, given by the numerical 
experiment against (2.28) and found close agreement. The relative error 
was much less than 1% for all cases. 

We next checked the constancy of n +hl/Zu_ along a constant x. 
Because n and h~/2u are of the order of ea and their individual time 
derivatives are of the order of e2a 2, we must show that the time derivative 
of the sum is small with respect to g2o2. The numerical experiments showed 
that the average of the gradient of n + h l / Z u  w a s  of the order of e3a 3. 
These results are shown in Table VI. 

We also checked hu and n along negative characteristics [(2.22a), 
(2.22b), respectively] and found that the changes in hu and n along 
negative characteristics were of the order of e3a3. Table VII contains the 
results from various cases checked along a typical O characteristic. 
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